Propiedades psicométricas de la Escala de Phubbing: Modelo Bifactor e Invarianza factorial en universitarios peruanos.
DOI:
https://doi.org/10.21134/haaj.v22i2.691Palabras clave:
validez, invarianza, fiabilidad, phubbing, universitarios, PerúResumen
Introducción: El Phubbing es una conducta que consiste en menospreciar la comunicación interpersonal directa por dar preferencia al uso del teléfono inteligente, por su naturaleza descalificadora tiene implicancias negativas en la vida de las personas. La Escala de Phubbing es la medida más utilizada para medir este atributo, fue diseñada por Karadag et al. (2015) y ha demostrado sostener su estructura bidimensional en diferentes contextos. Objetivo: El presente estudio se concentra en analizar la pertinencia de un modelo bifactor que explique la varianza común de los factores específicos. Asimismo, se busca verificar la invarianza de la medida según género. Método: Para este estudio instrumental, se seleccionaron intencionalmente 632 universitarios limeños, en su mayoría procedentes de universidades privadas (54.6%), con mayor presencia de mujeres (54.1%), sus edades van entre 16 y 37 años (M=20.88; DE=2.74). Resultados: Los resultados muestran que el modelo bifactor presenta un mejor ajuste respecto a otros modelos analizados (TLI=.99; RMSEA = .05[.03-.06]; ECV=.71; H=.89; FD=.91). Asimismo, se consiguió establecer la invarianza configuracional, métrica y escalar de la medida según el género. Se concluye que la Escala de Phubbing es una medida parsimoniosa e interpretable que mide consistentemente el phubbing en universitarios limeños.
Descargas
Citas
Abad, F., Olea, J., Ponsoda, V., & Garcia, C. (2011). Medición en ciencias sociales y de la salud. Editorial Sintesis.
Abramova, O., Baumann, A., Krasnova, H., & Lessmann, S. (junio, 2017). To phub or not to phub: Understanding off-task smartphone usage and its consequences in the academic environment. 25º European Conference on Information Systems (ECIS), Guimarães, Portugal. https://aisel.aisnet.org
Al-Saggaf Y, MacCulloch R, & Wiener K. (2018) Trait boredom ıs a predictor of phubbing frequency. Journal of Technology in Behavioral Science, 4(2), 245-252. https://doi.org/10.1007/s41347-018-0080-4
Al-Saggaf, Y. & O’Donnell, S. (2019). The Role of State Boredom, State of Fear of Missing Out and State Loneliness in State Phubbing, Australasian Conference on Information Systems, Perth Western Australia. https://researchoutput.csu.edu.au/ws/portalfiles/portal/37002915/35753003_published_paper.pdf
American Educational Research Association, American Psychological Association & National Council On Measurement In Education (2018), Standards for Educational and Psychological Testing, Washington, DC, USA: American Educational Research Association.
Andreassen, C. S., Torsheim, T., Brunborg, G. S., & Pallesen, S. (2012). Development of a Facebook Addiction Scale. Psychological Reports, 110(2), 501-517. https://doi.org/10.2466/02.09.18.PR0.110.2.501-517
Ato, M., López, J. & Benavente, A. (2013). Un sistema de clasificación de los diseños de investigación en psicología, Anales de Psicología, 29(3), 1038-1059. https://doi.org/10.6018/analesps.29.3.178511
Balta, S., Emirtekin, E., Kircaburun, K., & Griffiths, M. (2020). Neuroticism, Trait Fear of Missing Out, and Phubbing: The Mediating Role of State Fear of Missing Out and Problematic Instagram Use. International Journal of Mental Health and Addiction, 18, 628-639. https://doi.org/10.1007/s11469-018-9959-8 18:628–639
Barrios-Borjas DA, Bejar-Ramos VA, Cauchos-Mora VS (2017) Excessive use of smartphones/cell phones: phubbing and nomofobia. Revista Chilena de Neuropsiquiatría, 55, 205-206. http://dx.doi.org/10.4067/s0717-92272017000300205
Bentler, P. & Bonett, D. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, 588-606. https://doi.org/10.1037/0033-2909.88.3.588
Błachnio A. & Przepiorka A. (2019). Be aware! If you start using Facebook problematically you will feel lonely: Phubbing, loneliness, self-esteem, and Facebook intrusion. A cross-sectional study. Social Science Computer Review, 37(2), 270-278. https://doi.org/10.1177/0894439318754490
Blanca, M. J., & Bendayan, R. (2018). Spanish version of the phubbing scale: Internet addiction, facebook intrusion, and fear of missing out as correlates. Psicothema, 30(4), 449–454. https://doi.org/10.7334/psicothema2018.153
Bonifay, W. E., Reise, S. P., Scheines, R., & Meijer, R. R. (2015). When are multidimensional data unidimensional enough for structural equation modeling? An evaluation of the DETECT multidimensionality index. Structural Equation Modeling: A Multidisciplinary Journal, 22(4), 504-516.
Byrne, B. (2008). Testing for multigroup equivalence of a measuring instrument: A walk through the process. Psicothema, 20(4), 872-882.
Byrne, B. (2008). Testing for multigroup equivalence of a measuring instrument: A walk through the process. Psicothema, 2. 872-882.
Chotpitayasunondh, V., & Douglas, K. M. (2016). How “phubbing” becomes the norm: The antecedents and consequences of snubbing via smartphone. Computers in Human Behavior, 63, 9-18. https://doi.org/10.1016/j.chb.2016.05.018
Chotpitayasunondh, V., & Douglas, K. M. (2018). The effects of “phubbing” on social interaction. Journal of Applied Social Psychology, 48, 304–316. https://doi.org/10.1111/jasp.12506
Coenders, G., & Batista-Foguet, J.M. (2005). Temas avanzados en modelos de ecuaciones estructurales. Editorial La Muralla
Correa-Rojas, J., Grimaldo-Muchotrigo, M., & Del Rosario-Gontaruk, S. (2020) Propiedades psicométricas de la Fear of Missing Out Scale (FoMOs) en universitarios peruanos. Revista Aloma, 38(2), 113-120. https://doi.org/10.51698/aloma.2020.38.2.113-120
Davey S, Davey A, Raghav SK, Singh JV, Singh N, Blachnio A et al. (2018) Predictors and consequences of “Phubbing” among adolescents and youth in India: An impact evaluation study. Journal of Family and Community Medicine, 25,35-42. https://doi.org/10.4103/jfcm.JFCM_71_17
Domínguez-Lara, S. (2014) ¿Matrices policóricas/tetracóricas o matrices Pearson? Un estudio metodológico. Revista Argentina de Ciencias del Comportamiento (RACC), 6 (1), 39-48. https://doi.org/10.32348/1852.4206.v6.n1
Domínguez-Lara, S., & Rodriguez, A. (2017). Índices estadísticos de modelos bifactor. Interacciones, 3(2), 59-65. https://doi.org/10.24016/2017.v3n2.51
Dueber, D. M. (2017). Bifactor Indices Calculator: A Microsoft Excel-based tool to calculate various indices relevant to bifactor CFA models. https://doi.org/10.13023/edp.tool.01
Dwyer, R., Kushlev, K., & Dunn, E. (2018). Smartphone use undermines enjoyment of face-to-face social interactions. Journal of Experimental Social Psychology, 78, 233–239. https://doi.org/10.1016/j.jesp.2017.10.007
Elosua, P. (2005). Evaluación progresiva de la invarianza factorial entre las versiones original y adaptada de una escala de autoconcepto. Psicothema, 17(2), 356-362.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18, 39-50
Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Erlbaum
Hair, J., Anderson, R., Tatham, R., & Black, W., (2010). Análisis multivariante (2a ed.). Madrid, España: Pearson Prentice Hall. https://doi.org/10.1016/j.jmva.2009.12.014
Halpern, D. & Katz, J.E. (2017). Texting's consequences for romantic relationships: A cross-lagged analysis highlights its risks, Computers in Human Behavior, 71, 386-394. https://doi.org/10.1016/j.chb.2017.01.051.
Hancock, G. & Mueller, R.O. (2001). Rethinking construct reliability within latent variable systems. Structural Equation Modeling: Present and Future. 195-216.
Johnson, A.E. (2020). Phubbing, partner phubbing and relationship satisfaction among couples, International Journal of Advanced Education and Research, 5(2), 19.23. http://www.alleducationjournal.com/archives/2020/vol5/issue2/5-2-13
Johnson, J. A. (2005). Ascertaining the validity of individual protocols from web-based personality inventories. Journal of Research in Personality, 39, 103-129. https://doi.org/10.1016/j.jrp.2004.09.009
Jöreskog, K.G. & Sörbom, D. (1986). Lisrel VI: Analysis of Linear Structural Relationships by Maximum Likelihood and Least Square Methods. Mooresville, IN: Scientific Software, Inc.
Karadağ, E., Tosuntaş, Ş. B., Erzen, E., Duru, P., Bostan, N., Şahin, B. M., … Babadağ, B. (2015). Determinants of phubbing, which is the sum of many virtual addictions: A structural equation model. Journal of Behavioral Addictions, 4(2), 60-74. https://doi.org/10.1556/2006.4.2015.005
Kline, R. (2016). Principles and Practice of Structural Equation Modeling (4th Edition). The Guilford Press.
Kushlev, K. & Dunn, E. (2019). Smartphones distract parents from cultivating feelings of connection when spending time with their children, Journal of Social and Personal Relationships, 36(6), 1619–1639. https://doi.org/10.1177/0265407518769387
Lee, S. T. (2018). Testing for measurement invariance: Does your measure mean the same thing for different participants? APS Observer, 31(8), 32–33.
Li, C. -H. (2014). The performance of MLR, USLMV, and WLSMV estimation in structural regression models with ordinal variables (Doctoral Dissertations, Michigan State University, East Lansing, MI, Estados Unidos). https://bit.ly/3dDI3BR
Linacre, J. M. (2002). Optimizing rating scale category effectiveness. Journal of Applied Measurement, 3(1), 85-106
Meade, A. W., & Craig, S. B. (2012). Identifying careless responses in survey data. Psychological Methods, 17(3), 437–455. https://doi.org/10.1037/a0028085
Meade, A. W., & Craig, S. B. (2012). Identifying careless responses in survey data.
Miller-Ott, A. E., & Kelly, L. (2017). A Politeness theory analysis of cell-phone usage in the presence of friends. Communication Studies, 68, 190–207. https://doi.org/10.1080/10510974.2017.1299024
Nakamura, T. (2015). The action of looking at a mobile phone display as nonverbal behavior/communication: A theoretical perspective, Computers in Human Behavior (43), 68–75. https://doi.org/10.1016/j.chb.2014.10.042
Pérez, E. & Medrano, L. (2010). Análisis Factorial Exploratorio: Bases Conceptuales y Metodológicas. Revista Argentina de Ciencias del Comportamiento, 2(1), 58- 66.
Przybylski, A. K., & Weinstein, N. (2012). Can you connect with me now? How the presence of mobile communication technology influences face-to-face conversation quality. Journal of Social and Personal Relationships, 30(3), 237–246. https://doi.org/10.1177/0265407512453827
Oberst, U., Wegmann, E., Stodt, B., Brand, M., & Chamarro, A. (2017). Negative consequences from heavy social networking in adolescents: The mediating role of fear of missing out. Journal of Adolescence, 55, 51- 60. https://doi.org/10.1016/j.adolescence.2016.12.008
Przybylski, A. K., Murayama, K., DeHaan, C. R., & Gladwell, V. (2013). Fear of Missing Out Scale: FoMOs. Computers in Human Behavior, 29, 1814-1848. https://doi.org/10.1037/t23568-000
Psychological Methods, 17(3), 437–455. https://doi.org/10.1037/a0028085
Radesky, J., Kistin C., Zuckerman B., Nitzberg K., Gross J., Kaplan-Sanoff M., Augustyn M., & Silverstein M. (2014). Patterns of mobile device use by caregivers and children during meals in fast food restaurants. Pediatrics, 133(4), e843-9. https://doi.org/10.1542/peds.2013-3703.
Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47(5), 667-696. https://doi.org/10.1080/00273171.2012.715555
Reise, S. P., Bonifay, W. E., & Haviland, M. G. (2013). Scoring and modeling psychological measures in the presence of multidimensionality. Journal of Personality Assessment, 95(2), 129-140. https://doi.org/10.1080 / 00223891.2012.725437
Roberts, J. A. & David, M. E. (2016). My life has become a major distraction from my cell phone: Partner phubbing and relationship satisfaction among romantic partners. Computers in Human Behavior (54), 134–141. https://doi.org/10.1016/j.chb.2015.07.058
Roberts, J. A., and David, M. E. 2017. Put down your phone and listen to me: How boss phubbing undermines the psychological conditions necessary for employee engagement, Computers in Human Behavior (75), 206–217. https://doi.org/10.1016/j.chb.2017.05.021
Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. https://doi.org/10.18637/jss.v048.i02
Rosseel, Y. (2018). Lavaan: Latent variable analysis. https://CRAN.R-project.org/package=lavaan
RStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. http://www.rstudio.com/
Shellenbarger, S. (2013). Just look me in the eye already. Wall Street Journal. http://www.wsj.com/articles/SB10001424127887324809804578511290 822228174
Stucky, B. D., Thissen, D. & Edelen, M. O. (2013). Using logistic approximations of marginal trace lines to develop short assessments. Applied Psychological Measurement, 37(1), 41-57. https://doi.org/10.1177/0146621612462759
Syed, A. (2019). Social Networking and Its Role in Media Entrepreneurship: Evaluating the Use of Mobile Phones in the Context of Online Shopping – A Review, Journal of Media Management and Entrepreneurship, 1(1), 73-86. https://doi.org/10.4018/JMME.2019010105
Ugar, N. G. & Koc, T. (2015). Time for digital detox: Misuse of mobile technology and phubbing, Procedia - Social and Behavioral Sciences, 195(2015), 1022-1031. https://core.ac.uk/download/pdf/82387148.pdf
Vallejos-Flores, M. Á., Copez-Lonzoy, A., & Capa-Luque, W. (2018). Is there anyone online?: Validity and reliability of the Spanish version of the bergen facebook addiction scale (BFAS) in university students. Health and Addictions, 18(2), 175-184. https://doi.org/10.21134/haaj.v18i2.394
Vanden Abeele, M. & Postma‐Nilsenova, M. (2018). More Than Just Gaze: An Experimental Vignette Study Examining How Phone-Gazing and Newspaper-Gazing and Phubbing-While-Speaking and Phubbing-While-Listening Compare in Their Effect on Affiliation. Communication Research Reports 35(4), 1-11. https://doi.org/10.1080/08824096.2018.1492911
Vanden Abeele, M. M., Antheunis, M. L., & Schouten, A. P. (2016). The effect of mobile messaging during a conversation on impression formation and interaction quality. Computers in Human Behavior, 62, 562–569. https://doi.org/10.1016/j.chb.2016.04.005
Ventura-León, J. (2017). Intervalos de confianza para coeficiente Omega: Propuesta para el cálculo. Adicciones, 30(1), 77-78. http://dx.doi.org/10.20882/adicciones.962
Verdam, M. G., Oort, F. J., & Sprangers, M. A. (2016). Using structural equation modeling to detect response shifts and true change in discrete variables: an application to the items of the SF-36. Quality of life research: an international journal of quality of life aspects of treatment, care and rehabilitation, 25(6), 1361–1383. https://doi.org/10.1007/s11136-015-1195-0
Wind, S. A., & Engelhard, G., Jr. (2012). Examining rating quality in writing assessment: rater agreement, error, and accuracy. Journal of applied measurement, 13(4), 321–335. http://dx.doi.org/10.1177/0013164415604704
Wu, H., & Estabrook, R. (2016). Identification of confirmatory factor analysis models of different levels of invariance for ordered categorical outcomes. Psychometrika 81, 1014–1045. https://doi.org/10.1007/s11336-016-9506-0
Young, K. (2017, October 17). 98% of Gen Z Own a Smartphone. http://blog.globalwebindex.net/chart-of-the-day/98-percent-of-gen-z-own-a-smartphone/
Zamani, F., Talepasand, S., & Taghinezhad, A. (2020). Psychometric properties of the Phubbing among iranian students. Health Education and health Promotion, 8(1), 25-30. https://hehp.modares.ac.ir/article-5-35782-en.html
Zumbo, B. D., Gadermann, A.M., y Zeisser, C. (2007). Ordinal version of coefficients Alpha and Theta for Likert rating scales. Journal of Modern Applied Statistical Methods, 6, 21-29.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Jossué Correa-Rojas, Mirian Grimaldo-Muchotrigo, Emma Cambillo-Moyano
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores que publican en esta revista están de acuerdo con la declaración de principios éticos disponible en la web y con los siguientes términos:
Los derechos del material publicado pertenecerán a sus respectivos autores. Los artículos publicados en HAAJ se pueden utilizar bajo la licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International, por lo que se permite la lectura, copia, distribución, impresión, búsqueda o realizar enlaces al texto completo de esta revista sin pedir permiso previo del editor o del autor, siempre que se referencia a HAAJ y a los autores y no se utilice con fines comerciales.
Los autores pueden incluir la obra en repositorios institucionales o en otras publicaciones siempre que se reconozca y cite adecuadamente esta revista.
El equipo editorial de HAAJ anima a los autores a difundir sus trabajos publicados a través de cualquier medio (conferencias, clases, charlas, etc.) y/o plataformas (redes sociales, repositorios, webs, etc.).
HAAJ sigue las "Core Practices" de COPE (Committee on Publication Ethics).